Loading...
Appendix EE - Sanitary Sewer CapacityAppendix EE Sanitary Sewer Capacity p:\2016\16222\admin\sanitary sewer analysis 08-28-2018.docx EXISTING DOWNSTREAM SANITARY SEWER MAIN ANALYSIS 900 King Street Development 900 KING STREET VILLAGE OF RYE BROOK, NEW YORK Applicant/Operator/ Owner: 900 King Street Owner, LLC 200 Madison Avenue, 26th Floor New York, NY 10016 Contact: Veneziano & Associates Tel: (914) 273-1300 Prepared by: JMC Project 16222 Dated: Revised: 07/20/2018 08/31/2018 i TABLE OF CONTENTS SECTION TITLE PAGE I. INTRODUCTION……………………………………………………………………………………1 II. EXISTING CONDTIONS………………………………………………………………………...…1 III. PROPOSED CONDITIONS……………………………………………………………...………….4 IV. CONCLUSION………………...…………………………………………………………………….7 APPENDICES APPENDIX DESCRIPTION A. QAV Technologies Sanitary Sewer Flow Report B. Sewer Vicinity Drawings VCM-1 “Vicinity Sewer Map” C. Existing Hydraulic Loading Calculations Memorandum D. Proposed Hydraulic Loading Calculations Memorandum E. Hydraulic Pipe Calculations Under Existing Conditions (The Arbors) F. Hydraulic Pipe Calculations Under Proposed Conditions (The Arbors) G. Hydraulic Pipe Calculations Under Existing Conditions (Hillandale Road) H. Hydraulic Pipe Calculations Under Proposed Conditions (Hillandale Road) 1 I. INTRODUCTION This analysis of the existing downstream sanitary sewer infrastructure has been prepared to determine its adequacy in association with the 900 King Street redevelopment project. The property is currently developed as an office building with a parking lot within the PUD "Planned Unit Development District." The project is set on the northwest corner of Arbor Drive and King Street. The project includes the removal of the existing, mostly vacant, office building and large surface parking lot and the construction of an integrated age-restricted residential community consisting of approximately 160 Independent Living (IL) unit facility; approximately 85 units of Assisted Living / Memory Care (AL) facility and 24 two-bedroom residential townhouses in the western portion of the Site. The Site would continue to be accessed from Arbor Drive and a new circular drive would be constructed within the Site that would connect and provide access to the Proposed Project’s three components. II. EXISTING CONDITIONS The Site is located within the Blind Brook Sewer District, which is served by the Blind Brook Wastewater Treatment Plant (WWTP). The Blind Brook WWTP has a design capacity of 5.0 million gpd, with a 2014 actual flow of 3.0 million gpd. The Site is served by an existing private 10-inch sanitary main that connects to an existing 8-inch Village owned main, which proceeds south through The Arbors development and connects into the sanitary sewer line in Hillandale Road, where it then connects into the county sewer line at the intersection of Hillandale Road, Loch Lane, Edgewood Drive, Beechwood Boulevard and Woodland Drive. From this intersection the sewer then flows to the Blind Brook WWTP (See Appendix C ‘Sewer Vicinity Drawings’). Existing sanitary sewer information used in this report was taken from the following drawings: “Survey of Property of the Arbors”, as prepared by JMC, “Sewer and Drain Plan and Profile”, as prepared by Dolph Rotfeld Engineering Associates, last revised 6/28/1977 and “Sanitary and Storm Sewer Repair Plans”, as prepared by LAN Associates, LLP., last revised 3/28/2007 and QAV Technologies Sanitary Sewer Flow Report, dated 8/1/2018. 2 It should be noted that all peak flows used in the calculations for this report were calculated using bedroom counts obtained from Village tax records along with Town of Rye tax parcel information (www.axisgis.com) and then using the Existing Hydraulic Loading Calculations Memorandum, Appendix ‘C’ for the existing 900 King Street flows, to determine existing flows into the system. The Arbors development was built between 1978 and 1980, therefore, according to the above referenced text, a hydraulic loading rate of 150 gpd per bedroom was applied. The residences along Hillandale Road and Edgewood Drive that are assumed to connect into the sewer main running down Hillandale Road are all assumed to be built before 1980, therefore, the same 150 gpd loading rate was applied. It should also be noted that this is the highest loading rate for this type of use. The peak flows, design capacity, pipe size and maximum flow depth of each pipe running from the existing 900 King Street building to SMH A-1 are summarized in the table below: Table 1 Sewer Capacities and Flow Depth Pre-Development Pipe Designation No. of Bedrooms Peak Flow (cfs) Maximum Design Flow Capacity (cfs) Pipe Depth (Diameter in Inches) Maximum Flow Depth (Inches) SMH-1 to Exist 3 Ex. Bldg.* 0.12 2.53 10 1.44 Exist 3 to SMH-C-6 Ex. Bldg.* 0.12 1.91 8 1.44 SMH-C-6 to SMH-C-5 123 0.24 1.88 8 1.92 SMH-C-5 to SMH-C-4 123 0.24 1.88 8 1.92 SMH-C-4 to SMH-C-3 147 0.26 1.88 8 2.04 SMH-C-3 to SMH-C-2 147 0.26 1.88 8 2.04 SMH-C-2 to SMH-C-1 176 0.29 1.88 8 2.16 SMH-C-1 to SMH-A-5 176 0.29 1.86 8 3.24 SMH-A-5 to SMH-A-4 549 0.63 0.96 8 4.92 SMH-A-4 to SMH-A-3 549 0.63 0.97 8 4.80 SMH-A-3 to SMH A-2 595 0.68 1.15 8 4.68 SMH-A-2 to SMH-A-1A 595 0.68 1.15 8 4.68 SMH-A-1A to SMH-A-1 595 0.68 1.30 8 4.20 SMH-A-1 to END 595 0.68 1.43 8 4.08 *Includes the existing 900 King Street building if it were to be fully occupied, which has a flow of 79,652 gpd/0.123 cfs (19,913 gpd multiplied by 4). These calculations can be found in Appendix ‘C’ of this report. 3 The peak flows, design capacity, pipe size and maximum flow depth of each pipe running from SMH HD to the county trunk main are summarized in the table below: Table 2 Sewer Capacities and Flow Depth Pre-Development Pipe Designation No. of Bedrooms Peak Flow (cfs) Maximum Design Flow Capacity (cfs) Pipe Depth (Diameter in Inches) Maximum Flow Depth (Inches) SMH-HD to SMH HD-1 *Site 0.73 1.87 8 3.00 SMH HD-1 to SMH HD-2 *Site 0.68 4.17 8 2.16 SMH-HD-2 to SMH HD-3 5 0.69 5.94 8 2.40 SMH HD-3 to SMH HD-4 15 0.70 2.81 8 2.64 SMH HD-4 to SMH HD-5 25 0.72 3.79 8 2.28 SMH-HD-5 to SMH HD-6 31 0.73 4.30 8 2.28 SMH HD-6 to SMH EX-1 45 0.74 4.13 8 2.28 SMH EX-1 to SMH EX-2 53 0.77 4.38 8 2.64 SMH EX-2 to SMH EX-3 62 0.79 2.42 8 3.48 SMH EX-3 to SMH EX-4 73 0.78 1.50 8 6.00 SMH EX-4 to SMH EX-5 73 0.77 1.71 8 6.60 SMH EX-5 to COUNTY 73 0.76 1.43 8 4.68 *Includes the entire flow of 0.68 cfs from upstream system. See SMH A-1 to END in Table 1. In order to confirm the existing system’s capacity and to supplement the above calculations, 900 King Street, LLC retained QAV Technologies, LLC (QAV) to monitor flows for a period of at least 30 days, see Appendix ‘A’. The monitoring was performed on the structure SMH A-2, as shown on the included JMC Drawing VCM-1 “Vicinity Sewer Map”, downstream of the project Site and the entire Arbor’s development. The structure is located along the Blind Brook Meadowlark Path in the southwest corner of the Arbor’s Development Property. QAV monitored the flow at this structure from May 27th, 2018 through July 8th, 2018 (43 days) and issued a Report of the data, dated August 1st, 2018, which is provided in Appendix ‘A’ of this report. 4 The following table provides a summary of the report findings: Table 3 QAV Report Summary Minimum Average Maximum Flow (MGD/cfs) 0.01/0.015 0.06/0.093 0.15/0.232 Level (Inches) 1.80 3.11 5.17 Velocity (Feet/Sec) 0.18 0.70 1.24 As indicated in the table above, the existing eight inch sewer flowed at approximately 9% (includes max. design flow capacity of 0.96 cfs from Table 1, plus the average monitored flow of 0.093 cfs from Table 3) of its overall capacity on an average and at approximately 21% (includes max. design flow capacity of 0.96 cfs from Table 1, plus the max. monitored flow of 0.232 cfs from Table 3) of its overall capacity during the peak flow. The calculated peak flow of 0.68 cfs for the portion of the system upstream of the monitored structure (see Table 1) is approximately 3 times the actual monitored flow. III. PROPOSED CONDITIONS The Proposed Project, as described in the introduction, would construct an 8-inch sanitary sewer line that would connect the IL/AL building to the existing 10-inch private main. Separate connections for each townhouse cluster would be made to the new 8-inch main. Based on a conversation with the Village Building Inspector, there are no known capacity issues with the existing 8-inch public main, which is expected to be able to serve the Proposed Project. It should be noted that all proposed peak flows from the project are based upon a total of 222,800 gpd/0.345 cfs (55,700 gpd calculated flow multiplied by 4), as broken down in the attached Proposed Hydraulic Loading Calculation Memorandum in Appendix ‘D’. 5 The peak flows and design capacity along with the percentage of the capacity of each pipe post development running from the existing building to SMH A-1 are summarized in the table below. Also, the pipe size and maximum flow depth along with the percentage of flow height of each pipe after development is shown in the table below: Table 4 Sewer Capacities and Flow Depth Post-Development Pipe Designation No. of Bedrooms Peak Flow (cfs) Maximum Design Flow Capacity (cfs) % of Capacity (%) Pipe Depth (Diameter in Inches) Maximum Flow Depth (Inches) % of Maximum Height (%) SMH-1 to Exist 3 Site* 0.34 2.53 13.4 10 2.52 25.2 Exist 3 to SMH-C-6 123 0.34 1.91 17.8 8 2.40 30.0 SMH-C-6 to SMH-C-5 123 0.46 1.88 24.5 8 2.76 34.5 SMH-C-5 to SMH-C-4 123 0.46 1.88 24.5 8 2.76 34.5 SMH-C-4 to SMH-C-3 147 0.48 1.88 25.5 8 2.76 34.5 SMH-C-3 to SMH-C-2 147 0.48 1.88 25.5 8 2.88 36.0 SMH-C-2 to SMH-C-1 176 0.51 1.88 27.1 8 2.88 36.0 SMH-C-1 to SMH-A-5 176 0.51 1.86 27.4 8 4.32 54.0 SMH-A-5 to SMH-A-4 549 0.85 0.96 88.5 8 6.12 76.5 SMH-A-4 to SMH-A-3 549 0.85 0.97 87.6 8 5.88 73.5 SMH-A-3 to SMH A-2 595 0.90 1.15 78.3 8 5.76 72.0 SMH-A-2 to SMH-1A 595 0.90 1.15 78.3 8 5.76 72.0 SMH-1A to SMH-A-1 595 0.90 1.30 69.2 8 4.92 61.5 SMH-A-1 to END 595 0.90 1.43 62.9 8 4.80 60.0 *Includes the entire proposed development, which has a flow of 222,800 gpd/0.345 cfs (55,700 gpd multiplied by 4). The peak flows and design capacity along with the percentage of the capacity of each pipe post development from SMH HD to the county trunk main are summarized in the table below. Also, the pipe size and maximum flow depth along with the percentage of flow height of each pipe post development is shown in the table on the next page: 6 Table 5 Sewer Capacities and Flow Depth Post-Development Pipe Designation No. of Bedrooms Peak Flow (cfs) Maximum Design Flow Capacity (cfs) % of Capacity (%) Pipe Depth (Diameter in Inches) Maximum Flow Depth (Inches) % of Maximum Height (%) SMH HD to SMH HD-1 *Site 0.97 1.87 51.9 8 3.48 43.5 SMH HD-1 to SMH HD-2 *Site 0.90 4.17 21.6 8 2.52 31.5 SMH HD-2 to SMH HD-3 5 0.91 5.94 15.3 8 2.76 34.5 SMH HD-3 to SMH HD-4 15 0.93 2.81 33.1 8 3.12 39.0 SMH HD-4 to SMH HD-5 25 0.95 3.79 25.1 8 2.64 33.0 SMH HD-5 to SMH HD-6 31 0.97 4.30 22.6 8 2.64 33.0 SMH HD-6 to SMH EX-1 45 0.97 4.13 23.5 8 2.64 33.0 SMH EX-1 to SMH EX-2 53 1.03 4.38 23.5 8 3.00 37.5 SMH EX-2 to SMH EX-3 62 1.03 2.42 42.6 8 4.20 52.5 SMH EX-3 to SMH EX-4 73 1.01 1.50 67.3 8 6.48 81.0 SMH EX-4 to SMH EX-5 73 1.00 1.71 58.5 8 7.08 33.0 SMH EX-5 to COUNTY 73 0.98 1.43 68.5 8 5.52 69.0 * Includes the entire flow of 0.90 cfs from upstream. See SMH A-1 to END in Table 4. The existing peak flow from QAV’s report was added to the post construction peak flow along with the existing peak flows from the residences on Hillandale Road and the existing sanitary sewer was analyzed to check if the existing system would be able to accommodate the additional flows from the proposed development. The peak flows and design capacity along with the percentage of the capacity of each pipe after development is shown in the table on the next page. This flow was used to determine that the existing system has capacity to handle the additional flows from the proposed development. 7 Table 6 Total Flow Summary Post Development (8” Existing Main) Peak Sewage Flow/Flow Capacity (cfs) % Flowing Full Total Existing Flow from Site to County Trunk 0.300/1.43 21 Additional Flow from Proposed Project 0.345 N/A Total Flow Post-Construction from Site to County Trunk 0.645/1.43 45 IV. CONCLUSION This Sanitary Sewer Analysis has been prepared to describe the pre-development and post- development conditions of the sanitary sewer system downstream of the proposed development to determine if the downstream sanitary sewer system has capacity to accept the additional generated flows of 35,787 gpd/0.055 cfs. Based on the above, it is our professional opinion that the proposed improvements are not anticipated to have any adverse impacts to the downstream sanitary sewer system. APPENDIX A QAV TECHNOLOGIES SANITARY SEWER FLOW REPORT APPENDIX B SEWER VICINITY DRAWINGS D r a w i n g N o : P r o j e c t N o : D a t e : S c a l e : D r a w n : A p p r o v e d : A N Y A L T E R A T I O N O F P L A N S , S P E C I F I C A T I O N S , P L A T S A N D R E P O R T S B E A R I N G T H E S E A L O F A L I C E N S E D P R O F E S S I O N A L E N G I N E E R O R L I C E N S E D L A N D S U R V E Y O R I S A V I O L A T I O N O F S E C T I O N 7 2 0 9 O F T H E N E W Y O R K S T A T E E D U C A T I O N L A W , E X C E P T A S P R O V I D E D F O R B Y S E C T I O N 7 2 0 9 , S U B S E C T I O N 2 . P R O G R E S S P L O T T I N G D r a w i n g : S E W E R M A P D a t e : 2 0 1 8 - 0 2 - 2 6 T i m e : 1 2 : 1 4 P M B y : ARCHITECT: APPLICANT/OWNER: No.Revision Date Previous Editions Obsolete By COPYRIGHT © 2017 by JMC All Rights Reserved. No part of this document may be reproduced, stored in a retrieval system, or transmitted in any form or by means, electronic, mechanical,photocopying, recording or otherwise, without the prior written permission of JMC PLANNING, ENGINEERING, LANDSCAPE ARCHITECTURE & LAND SURVEYING, PLLC | JMC SITE DEVELOPMENTCONSULTANTS, LLC | JOHN MEYER CONSULTING, INC. (JMC). Any modifications or alterations to this document without the written permission of JMC shall render them invalid and unusable. APPENDIX C EXISTING HYDRAULIC LOADING CALCULATIONS MEMORANDUM APPENDIX D PROPOSED HYDRAULIC LOADING CALCULATIONS MEMORANDUM APPENDIX E HYDRAULIC PIPE CALCULATIONS UNDER EXISTING CONDITIONS (THE ARBORS) Fr o m  (I n l e t ) T o  (O u t l e t ) L e n g t h I n l e t O u t l e t A v e r a g e P i p e M a n n i n g ' s P e a k M a x D e s i g n M a x  Fl o w  / M a x M a x No d e N o d e I n v e r t I n v e r t S l o p e D i a m e t e r R o u g h n e s s F l o w F l o w F l o w D e s i g n  Flow F l o w  Depth  / F l o w El e v a t i o n E l e v a t i o n or  He i g h t Ve l o c i t y C a p a c i t y R a t i o T o t a l  Depth D e p t h Ratio (f t ) ( f t ) ( f t ) ( % ) ( i n c h e s ) (c f s ) ( f t / s e c ) ( c f s ) (ft) SM H ‐2 S M H ‐1 4 7 . 0 0 2 3 5 . 8 6 2 3 5 . 3 5 1 . 0 9 0 0 8 . 0 4 0 0 . 0 1 1 0 0 . 1 2 2 . 4 8 1 . 4 9 0 . 0 8 0 . 2 0 0 . 1 3 sm h ‐c ‐3 s m h ‐c ‐2 1 1 2 . 0 0 2 2 1 . 1 2 2 1 9 . 1 7 1 . 7 4 0 0 8 . 0 4 0 0 . 0 1 1 0 0 . 2 6 3 . 6 5 1 . 8 8 0 . 1 4 0 . 2 6 0 . 1 7 sm h ‐a ‐4 s m h ‐a ‐3 1 7 1 . 0 0 2 1 3 . 0 9 2 1 2 . 3 0 0 . 4 6 0 0 8 . 0 4 0 0 . 0 1 1 0 0 . 6 3 2 . 9 2 0 . 9 7 0 . 6 5 0 . 6 0 0 . 4 0 SM H ‐1 e x i s t 3 1 6 3 . 0 0 2 3 5 . 2 5 2 3 3 . 7 0 0 . 9 5 0 0 9 . 9 6 0 0 . 0 1 1 0 0 . 1 2 2 . 5 9 2 . 5 3 0 . 0 5 0 . 1 5 0 . 1 2 sm h ‐c ‐4 s m h ‐c ‐3 2 1 7 . 0 0 2 2 5 . 0 0 2 2 1 . 2 2 1 . 7 4 0 0 8 . 0 4 0 0 . 0 1 1 0 0 . 2 6 3 . 7 4 1 . 8 8 0 . 1 4 0 . 2 5 0 . 1 7 sm h ‐c ‐6 s m h ‐c ‐5 1 5 7 . 0 0 2 3 2 . 4 0 2 2 9 . 6 7 1 . 7 4 0 0 8 . 0 4 0 0 . 0 1 1 0 0 . 2 4 3 . 6 3 1 . 8 8 0 . 1 3 0 . 2 4 0 . 1 6 ex i s t 3 s m h ‐c ‐6 6 7 . 0 0 2 3 3 . 7 0 2 3 2 . 5 0 1 . 7 9 0 0 8 . 0 4 0 0 . 0 1 1 0 0 . 1 2 2 . 9 9 1 . 9 1 0 . 0 6 0 . 1 8 0 . 1 2 sm h ‐c ‐5 s m h ‐c ‐4 2 5 7 . 0 0 2 2 9 . 5 7 2 2 5 . 1 0 1 . 7 4 0 0 8 . 0 4 0 0 . 0 1 1 0 0 . 2 4 3 . 6 6 1 . 8 8 0 . 1 3 0 . 2 4 0 . 1 6 sm h ‐a ‐3 s m h ‐a ‐2 7 1 . 0 0 2 1 2 . 2 2 2 1 1 . 7 6 0 . 6 5 0 0 8 . 0 4 0 0 . 0 1 1 0 0 . 6 8 3 . 2 0 1 . 1 5 0 . 5 9 0 . 5 8 0 . 3 9 sm h ‐a ‐5 s m h ‐a ‐4 6 6 . 0 0 2 1 3 . 4 9 2 1 3 . 1 9 0 . 4 5 0 0 8 . 0 4 0 0 . 0 1 1 0 0 . 6 3 2 . 8 1 0 . 9 6 0 . 6 6 0 . 6 2 0 . 4 1 sm h ‐a ‐2 sm h ‐1a 6 5 . 0 0 2 1 1 . 6 6 2 1 1 . 2 4 0 . 6 5 0 0 8 . 0 4 0 0 . 0 1 1 0 0 . 6 8 3 . 1 8 1 . 1 5 0 . 5 9 0 . 5 9 0 . 3 9 sm h ‐1a s m h ‐a ‐1 3 0 7 . 0 0 2 1 1 . 1 5 2 0 8 . 5 9 0 . 8 3 0 0 8 . 0 4 0 0 . 0 1 1 0 0 . 6 8 3 . 7 0 1 . 3 0 0 . 5 2 0 . 5 2 0 . 3 5 sm h ‐a ‐1 E n d 1 0 0 . 0 0 2 0 8 . 5 5 2 0 7 . 5 5 1 . 0 0 0 0 8 . 0 4 0 0 . 0 1 1 0 0 . 6 8 3 . 8 4 1 . 4 3 0 . 4 7 0 . 5 0 0 . 3 4 sm h ‐c ‐2 s m h ‐c ‐1 1 3 9 . 0 0 2 1 9 . 1 6 2 1 6 . 7 5 1 . 7 3 0 0 8 . 0 4 0 0 . 0 1 1 0 0 . 2 9 3 . 8 1 1 . 8 8 0 . 1 5 0 . 2 7 0 . 1 8 sm h ‐c ‐1 s m h ‐a ‐5 1 8 1 . 0 0 2 1 6 . 6 5 2 1 3 . 5 8 1 . 7 0 0 0 8 . 0 4 0 0 . 0 1 1 0 0 . 2 9 2 . 2 0 1 . 8 6 0 . 1 5 0 . 4 0 0 . 2 7 bl d g S M H ‐4 ‐1 2 0 3 . 0 0 2 4 3 . 4 4 2 4 1 . 4 1 1 . 0 0 0 0 8 . 0 4 0 0 . 0 1 1 0 0 . 1 2 2 . 4 8 1 . 4 3 0 . 0 9 0 . 2 0 0 . 1 3 SM H ‐4 ‐1 S M H ‐4 1 9 5 . 0 0 2 4 1 . 3 1 2 3 8 . 9 5 1 . 2 1 0 0 8 . 0 4 0 0 . 0 1 1 0 0 . 1 2 2 . 6 6 1 . 5 7 0 . 0 8 0 . 1 9 0 . 1 3 SM H ‐4 S M H ‐3 1 3 9 . 0 0 2 3 8 . 8 5 2 3 7 . 8 0 0 . 7 6 0 0 8 . 0 4 0 0 . 0 1 1 0 0 . 1 2 2 . 2 3 1 . 2 4 0 . 1 0 0 . 2 2 0 . 1 4 SM H ‐3 S M H ‐2 1 7 0 . 0 0 2 3 7 . 7 0 2 3 5 . 9 6 1 . 0 2 0 0 8 . 0 4 0 0 . 0 1 1 0 0 . 1 2 2 . 5 0 1 . 4 4 0 . 0 9 0 . 2 0 0 . 1 3 APPENDIX F HYDRAULIC PIPE CALCULATIONS UNDER PROPOSED CONDITIONS (THE ARBORS) Fr o m  (I n l e t ) T o  (O u t l e t ) L e n g t h I n l e t O u t l e t A v e r a g e P i p e M a n n i n g ' s P e a k M a x D e s i g n M a x  Fl o w  / M a x M a x No d e N o d e I n v e r t I n v e r t S l o p e D i a m e t e r R o u g h n e s s F l o w F l o w F l o w D e s i g n  Flow F l o w  Depth  / F l o w El e v a t i o n E l e v a t i o n or  He i g h t Ve l o c i t y C a p a c i t y R a t i o T o t a l  Depth D e p t h Ratio (f t ) ( f t ) ( f t ) ( % ) ( i n c h e s ) (c f s ) ( f t / s e c ) ( c f s ) (ft) SM H ‐2 S M H ‐1 4 7 . 0 0 2 3 5 . 8 6 2 3 5 . 3 5 1 . 0 9 0 0 8 . 0 4 0 0 . 0 1 1 0 0 . 3 4 3 . 2 4 1 . 4 9 0 . 2 3 0 . 3 4 0 . 2 3 sm h ‐c ‐3 s m h ‐c ‐2 1 1 2 . 0 0 2 2 1 . 1 2 2 1 9 . 1 7 1 . 7 4 0 0 8 . 0 4 0 0 . 0 1 1 0 0 . 4 8 4 . 3 1 1 . 8 8 0 . 2 6 0 . 3 6 0 . 2 4 sm h ‐a ‐4 s m h ‐a ‐3 1 7 1 . 0 0 2 1 3 . 0 9 2 1 2 . 3 0 0 . 4 6 0 0 8 . 0 4 0 0 . 0 1 1 0 0 . 8 5 3 . 1 2 0 . 9 7 0 . 8 8 0 . 7 3 0 . 4 9 SM H ‐1 e x i s t 3 1 6 3 . 0 0 2 3 5 . 2 5 2 3 3 . 7 0 0 . 9 5 0 0 9 . 9 6 0 0 . 0 1 1 0 0 . 3 4 3 . 4 4 2 . 5 3 0 . 1 4 0 . 2 5 0 . 2 1 sm h ‐c ‐4 s m h ‐c ‐3 2 1 7 . 0 0 2 2 5 . 0 0 2 2 1 . 2 2 1 . 7 4 0 0 8 . 0 4 0 0 . 0 1 1 0 0 . 4 8 4 . 4 4 1 . 8 8 0 . 2 6 0 . 3 5 0 . 2 3 sm h ‐c ‐6 s m h ‐c ‐5 1 5 7 . 0 0 2 3 2 . 4 0 2 2 9 . 6 7 1 . 7 4 0 0 8 . 0 4 0 0 . 0 1 1 0 0 . 4 6 4 . 3 5 1 . 8 8 0 . 2 4 0 . 3 4 0 . 2 3 ex i s t 3 s m h ‐c ‐6 6 7 . 0 0 2 3 3 . 7 0 2 3 2 . 5 0 1 . 7 9 0 0 8 . 0 4 0 0 . 0 1 1 0 0 . 3 4 3 . 9 6 1 . 9 1 0 . 1 8 0 . 3 0 0 . 2 0 sm h ‐c ‐5 s m h ‐c ‐4 2 5 7 . 0 0 2 2 9 . 5 7 2 2 5 . 1 0 1 . 7 4 0 0 8 . 0 4 0 0 . 0 1 1 0 0 . 4 6 4 . 3 9 1 . 8 8 0 . 2 4 0 . 3 4 0 . 2 3 sm h ‐a ‐3 s m h ‐a ‐2 7 1 . 0 0 2 1 2 . 2 2 2 1 1 . 7 6 0 . 6 5 0 0 8 . 0 4 0 0 . 0 1 1 0 0 . 9 0 3 . 3 5 1 . 1 5 0 . 7 8 0 . 7 2 0 . 4 8 sm h ‐a ‐5 s m h ‐a ‐4 6 6 . 0 0 2 1 3 . 4 9 2 1 3 . 1 9 0 . 4 5 0 0 8 . 0 4 0 0 . 0 1 1 0 0 . 8 5 3 . 0 2 0 . 9 6 0 . 8 9 0 . 7 6 0 . 5 1 sm h ‐a ‐2 sm h ‐1a 6 5 . 0 0 2 1 1 . 6 6 2 1 1 . 2 4 0 . 6 5 0 0 8 . 0 4 0 0 . 0 1 1 0 0 . 9 0 3 . 3 3 1 . 1 5 0 . 7 8 0 . 7 2 0 . 4 8 sm h ‐1a s m h ‐a ‐1 3 0 7 . 0 0 2 1 1 . 1 5 2 0 8 . 5 9 0 . 8 3 0 0 8 . 0 4 0 0 . 0 1 1 0 0 . 9 0 3 . 9 4 1 . 3 0 0 . 6 9 0 . 6 2 0 . 4 1 sm h ‐a ‐1 E n d 1 0 0 . 0 0 2 0 8 . 5 5 2 0 7 . 5 5 1 . 0 0 0 0 8 . 0 4 0 0 . 0 1 1 0 0 . 9 0 4 . 0 8 1 . 4 3 0 . 6 3 0 . 6 0 0 . 4 0 sm h ‐c ‐2 s m h ‐c ‐1 1 3 9 . 0 0 2 1 9 . 1 6 2 1 6 . 7 5 1 . 7 3 0 0 8 . 0 4 0 0 . 0 1 1 0 0 . 5 1 4 . 4 5 1 . 8 8 0 . 2 7 0 . 3 6 0 . 2 4 sm h ‐c ‐1 s m h ‐a ‐5 1 8 1 . 0 0 2 1 6 . 6 5 2 1 3 . 5 8 1 . 7 0 0 0 8 . 0 4 0 0 . 0 1 1 0 0 . 5 1 2 . 7 9 1 . 8 6 0 . 2 7 0 . 5 4 0 . 3 6 bl d g S M H ‐4 ‐1 2 0 3 . 0 0 2 4 3 . 4 4 2 4 1 . 4 1 1 . 0 0 0 0 8 . 0 4 0 0 . 0 1 1 0 0 . 3 4 3 . 3 1 1 . 4 3 0 . 2 4 0 . 3 4 0 . 2 3 SM H ‐4 ‐1 S M H ‐4 1 9 5 . 0 0 2 4 1 . 3 1 2 3 8 . 9 5 1 . 2 1 0 0 8 . 0 4 0 0 . 0 1 1 0 0 . 3 4 3 . 5 4 1 . 5 7 0 . 2 2 0 . 3 2 0 . 2 2 SM H ‐4 S M H ‐3 1 3 9 . 0 0 2 3 8 . 8 5 2 3 7 . 8 0 0 . 7 6 0 0 8 . 0 4 0 0 . 0 1 1 0 0 . 3 4 2 . 9 6 1 . 2 4 0 . 2 8 0 . 3 7 0 . 2 5 SM H ‐3 S M H ‐2 1 7 0 . 0 0 2 3 7 . 7 0 2 3 5 . 9 6 1 . 0 2 0 0 8 . 0 4 0 0 . 0 1 1 0 0 . 3 4 3 . 3 2 1 . 4 4 0 . 2 4 0 . 3 4 0 . 2 3 APPENDIX G HYDRAULIC PIPE CALCULATIONS UNDER EXISTING CONDITIONS (HILLANDALE ROAD) Fr o m  (I n l e t ) T o  (O u t l e t ) L e n g t h I n l e t O u t l e t A v e r a g e P i p e M a n n i n g ' s P e a k M a x D e s i g n M a x  Fl o w  / M a x M a x No d e N o d e I n v e r t I n v e r t S l o p e D i a m e t e r R o u g h n e s s F l o w F l o w F l o w D e s i g n  Flow F l o w  Depth  / F l o w El e v a t i o n E l e v a t i o n or  He i g h t Ve l o c i t y C a p a c i t y R a t i o T o t a l  Depth D e p t h Ratio (f t ) ( f t ) ( f t ) ( % ) ( i n c h e s ) (c f s ) ( f t / s e c ) ( c f s ) (ft) sm h ‐hd ‐3 s m h ‐hd ‐4 1 5 0 . 0 0 1 8 2 . 1 0 1 7 6 . 3 0 3 . 8 7 0 0 8 . 0 4 0 0 . 0 1 1 0 0 . 7 0 7 . 0 0 2 . 8 1 0 . 2 5 0 . 3 3 0 . 2 2 ex ‐3e x ‐4 1 2 7 . 0 0 1 3 0 . 8 0 1 2 9 . 4 0 1 . 1 0 0 0 8 . 0 4 0 0 . 0 1 1 0 0 . 7 8 3 . 5 8 1 . 5 0 0 . 5 2 0 . 7 5 0 . 5 0 sm h ‐hd ‐4 s m h ‐hd ‐5 1 2 8 . 0 0 1 7 6 . 3 0 1 6 7 . 3 0 7 . 0 3 0 0 8 . 0 4 0 0 . 0 1 1 0 0 . 7 2 8 . 5 0 3 . 7 9 0 . 1 9 0 . 3 0 0 . 1 9 ex ‐2e x ‐3 1 7 1 . 0 0 1 3 5 . 7 0 1 3 0 . 8 0 2 . 8 7 0 0 8 . 0 4 0 0 . 0 1 1 0 0 . 7 9 6 . 0 9 2 . 4 2 0 . 3 3 0 . 4 5 0 . 2 9 sm h ‐hd ‐6e x ‐1 9 2 . 0 0 1 5 2 . 6 0 1 4 4 . 9 0 8 . 3 7 0 0 8 . 0 4 0 0 . 0 1 1 0 0 . 7 4 8 . 7 0 4 . 1 3 0 . 1 8 0 . 2 9 0 . 1 9 sm h ‐hd ‐5 s m h ‐hd ‐6 1 6 2 . 0 0 1 6 7 . 3 0 1 5 2 . 6 0 9 . 0 7 0 0 8 . 0 4 0 0 . 0 1 1 0 0 . 7 3 8 . 9 2 4 . 3 0 0 . 1 7 0 . 2 9 0 . 1 9 ex ‐1e x ‐2 9 8 . 0 0 1 4 4 . 9 0 1 3 5 . 7 0 9 . 3 9 0 0 8 . 0 4 0 0 . 0 1 1 0 0 . 7 7 8 . 6 6 4 . 3 8 0 . 1 8 0 . 3 4 0 . 2 2 ex ‐4e x ‐5 1 4 . 0 0 1 2 9 . 4 0 1 2 9 . 2 6 1 . 0 0 0 0 8 . 0 4 0 0 . 0 1 1 0 0 . 7 7 2 . 7 8 1 . 7 1 0 . 4 5 0 . 8 3 0 . 5 5 ex ‐5 o u t l e t 2 0 . 0 0 1 2 9 . 6 0 1 2 9 . 4 0 1 . 0 0 0 0 8 . 0 4 0 0 . 0 1 1 0 0 . 7 6 3 . 5 8 1 . 4 3 0 . 5 3 0 . 5 9 0 . 3 9 sm h ‐hd s m h ‐hd ‐1 1 4 0 . 0 0 2 1 0 . 6 0 2 0 8 . 2 0 1 . 7 1 0 0 8 . 0 4 0 0 . 0 1 1 0 0 . 7 3 6 . 2 4 1 . 8 7 0 . 3 9 0 . 3 8 0 . 2 5 sm h ‐hd ‐1 s m h ‐hd ‐2 1 9 0 . 0 0 2 0 8 . 2 0 1 9 2 . 0 0 8 . 5 3 0 0 8 . 0 4 0 0 . 0 1 1 0 0 . 6 8 8 . 6 6 4 . 1 7 0 . 1 6 0 . 2 8 0 . 1 8 sm h ‐hd ‐2 s m h ‐hd ‐3 37 . 0 0 1 8 8 . 5 0 1 8 2 . 1 0 1 7 . 3 0 0 0 8 . 0 4 0 0 . 0 1 1 0 0 . 6 9 9 . 1 3 5 . 9 4 0 . 1 2 0 . 3 0 0 . 2 0 APPENDIX H HYDRAULIC PIPE CALCULATIONS UNDER PROPOSED CONDITIONS (HILLANDALE ROAD) Fr o m  (I n l e t ) T o  (O u t l e t ) L e n g t h I n l e t O u t l e t A v e r a g e P i p e M a n n i n g ' s P e a k M a x D e s i g n M a x  Fl o w  / M a x M a x No d e N o d e I n v e r t I n v e r t S l o p e D i a m e t e r R o u g h n e s s F l o w F l o w F l o w D e s i g n  Flow F l o w  Depth  / F l o w El e v a t i o n E l e v a t i o n or  He i g h t Ve l o c i t y C a p a c i t y R a t i o T o t a l  Depth D e p t h Ratio (f t ) ( f t ) ( f t ) ( % ) ( i n c h e s ) (c f s ) ( f t / s e c ) ( c f s ) (ft) sm h ‐hd ‐3 s m h ‐hd ‐4 1 5 0 . 0 0 1 8 2 . 1 0 1 7 6 . 3 0 3 . 8 7 0 0 8 . 0 4 0 0 . 0 1 1 0 0 . 9 3 7 . 4 8 2 . 8 1 0 . 3 3 0 . 3 9 0 . 2 6 ex ‐3e x ‐4 1 2 7 . 0 0 1 3 0 . 8 0 1 2 9 . 4 0 1 . 1 0 0 0 8 . 0 4 0 0 . 0 1 1 0 1 . 0 1 3 . 8 2 1 . 5 0 0 . 6 8 0 . 8 1 0 . 5 4 sm h ‐hd ‐4 s m h ‐hd ‐5 1 2 8 . 0 0 1 7 6 . 3 0 1 6 7 . 3 0 7 . 0 3 0 0 8 . 0 4 0 0 . 0 1 1 0 0 . 9 5 9 . 0 9 3 . 7 9 0 . 2 5 0 . 3 4 0 . 2 2 ex ‐2e x ‐3 1 7 1 . 0 0 1 3 5 . 7 0 1 3 0 . 8 0 2 . 8 7 0 0 8 . 0 4 0 0 . 0 1 1 0 1 . 0 3 6 . 5 4 2 . 4 2 0 . 4 3 0 . 5 3 0 . 3 5 sm h ‐hd ‐6e x ‐1 9 2 . 0 0 1 5 2 . 6 0 1 4 4 . 9 0 8 . 3 7 0 0 8 . 0 4 0 0 . 0 1 1 0 0 . 9 7 9 . 3 3 4 . 1 3 0 . 2 4 0 . 3 4 0 . 2 2 sm h ‐hd ‐5 s m h ‐hd ‐6 1 6 2 . 0 0 1 6 7 . 3 0 1 5 2 . 6 0 9 . 0 7 0 0 8 . 0 4 0 0 . 0 1 1 0 0 . 9 7 9 . 5 9 4 . 3 0 0 . 2 2 0 . 3 4 0 . 2 2 ex ‐1e x ‐2 9 8 . 0 0 1 4 4 . 9 0 1 3 5 . 7 0 9 . 3 9 0 0 8 . 0 4 0 0 . 0 1 1 0 1 . 0 3 9 . 3 4 4 . 3 8 0 . 2 3 0 . 4 0 0 . 2 5 ex ‐4e x ‐5 1 4 . 0 0 1 2 9 . 4 0 1 2 9 . 2 6 1 . 0 0 0 0 8 . 0 4 0 0 . 0 1 1 0 1 . 0 0 4 . 0 6 1 . 7 1 0 . 5 9 0 . 8 9 0 . 5 9 ex ‐5 o u t l e t 2 0 . 0 0 1 2 9 . 6 0 1 2 9 . 4 0 1 . 0 0 0 0 8 . 0 4 0 0 . 0 1 1 0 0 . 9 8 3 . 7 8 1 . 4 3 0 . 6 9 0 . 7 0 0 . 4 6 sm h ‐hd s m h ‐hd ‐1 1 4 0 . 0 0 2 1 0 . 6 0 2 0 8 . 2 0 1 . 7 1 0 0 8 . 0 4 0 0 . 0 1 1 0 0 . 9 7 6 . 6 1 1 . 8 7 0 . 5 2 0 . 4 5 0 . 2 9 sm h ‐hd ‐1 s m h ‐hd ‐2 1 9 0 . 0 0 2 0 8 . 2 0 1 9 2 . 0 0 8 . 5 3 0 0 8 . 0 4 0 0 . 0 1 1 0 0 . 9 0 9 . 3 6 4 . 1 7 0 . 2 2 0 . 3 2 0 . 2 1 sm h ‐hd ‐2 s m h ‐hd ‐3 37 . 0 0 1 8 8 . 5 0 1 8 2 . 1 0 1 7 . 3 0 0 0 8 . 0 4 0 0 . 0 1 1 0 0 . 9 1 9 . 8 0 5 . 9 4 0 . 1 5 0 . 3 4 0 . 2 3